Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, NZM, METNO, SHN-SM
July 2017 to September 2017

Jean-Raymond Bidlot, European Centre for Medium-range Weather Forecasts, jean.bidlot@ecmwf.int

October 17, 2017
Chapter 1

Forewords

Outputs from different fully operational forecasting centres are compared to buoy and platform data as broadcasted to the meteorological community via the Global Telecommunication System (GTS). On a monthly basis, data are gathered informally from weather services with an interest in wave forecasting (Bidlot and Holt, 2006). The different data sets are subsequently merged and made available to all participating partners for further evaluation. In this document, examples, in graphical and tabular forms, are shown. These results have been processed at ECMWF and should served as an example to the kind of information that could be obtained from such comparison. No statement of quality, nor reasons why the different systems are performing differently will be given.
Chapter 2

Data

Before using observations for verification, care has to be taken to process the data to remove any erroneous observations. Moreover, extra care has to be taken to match the scale of both model and observations. This scale matching is achieved by averaging the hourly data in ±2 hour time windows centered on the four major synoptic times corresponding to the normal model output times. The original quality control and averaging procedure was discussed in Bidlot et al. (2002). It was extended to include platform data as described in Sætra and Bidlot (2004). Note that in this paper we refer to these data as buoy data since most of them are from moored buoys, except if stated otherwise.

The intercomparison relies on the exchange of model output at buoy locations. An agreed upon list of locations is used where observations are known to be available. Because buoy networks are changing with time, as witnessed by a rapid increase in the number of buoys available via the GTS since the mid-nineties, updates to the list have been necessary. Not all participating centres have been able to update their list however. Other participants are only running limited area model(s) or do produce the parameter(s) that can be compared to the buoy data. Because of the limited number of buoys, a fair comparison between the different systems can only be achieved if the same number of buoys and the same number of buoy-model collocations are used.

In this document, data that are common to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, NZM, METNO, SHN-SM are used whenever available. Some sub-areas might only have some of the participants and when all locations are considered, the limited models are left out. The other participants are left blank in the plots below.
References

Contents

1. Forewords .. 1
2. Data .. 2
3. Results .. 5

3.1 Comparison for all buoys 6
3.2 Comparison for Hawaiian buoys 21
3.3 Comparison for North East Pacific buoys 24
3.4 Comparison for North West Atlantic buoys 27
3.5 Comparison for Gulf of Mexico buoys 30
3.6 Comparison for Caribbean Sea buoys 33
3.7 Comparison for North East Atlantic buoys 36
3.8 Comparison for Euro-Atlantic Coast buoys 39
3.9 Comparison for North Sea platforms 42
3.10 Comparison for North Sea buoys 45
3.11 Comparison for Icelandic buoys and Norwegian platforms 48
3.12 Comparison for Baltic Sea buoys 51
3.13 Comparison for English Channel and Irish Sea 54
3.14 Comparison for Western Mediterranean Sea buoys 57
3.15 Comparison for Mediterranean Sea buoys 60
3.16 Comparison for Indian buoys 63
3.17 Comparison for Korean buoys 66
3.18 Comparison for Japanese buoys 69
3.19 Comparison for Australian South East Coast buoys 72
3.20 Comparison for Australian Great Barrier Reef buoys 75
3.21 Comparison for Australian South West facing Coast buoys

3.22 Comparison for Australian North West Coast buoys

3.23 Comparison for New Zealand buoy

3.24 Comparison for Brazilian buoys
Chapter 3

Results

In the remaining pages, some of the results of the comparison with buoys are presented for all common buoys and for common buoys within a sub-area as displayed by the corresponding maps. Summary forecast scores are shown first, followed by density scatter diagrams with associated statistics for each subarea. Only common data to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, NZM, METNO, SHN-SM are used.

This report was generated automatically, which explains its very generic appearance.
3.1 Comparison for all buoys

Figure 3.1: Buoy locations
Figure 3.2: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common all buoys.
Figure 3.3: Forecast root mean square error (RMSE) and linear correlation coefficient at common all buoys.
Comparison of forecasted ECMWF wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed ECMWF wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecasted MetOffice wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed MetOffice wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecasted UKMO wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed UKMO wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of forecasted FNMOC wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed FNMOC wave height with averaged buoy data, forecasts from 0 and 12Z.

Figure 3.4: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed AES wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=48) AES wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=48) NCEP wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=48) METFR wave height with averaged buoy data. forecasts from 0 and 12Z.

Figure 3.5: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.6: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) JMA wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) KMA wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) PRTOS wave height with averaged buoy data. forecasts from 0 and 12Z.

(a) t+0

(b) t+48

Figure 3.7: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) ECMWF wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed ECMWF wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) UKMO wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed UKMO wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) FNMOC wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed FNMOC wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

(a) t+0

Figure 3.8: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) AES wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed AES wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) NCEP wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed NCEP wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) METFR wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed METFR wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Figure 3.9: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t=t+48) DWD wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed AUSBM wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) SHOM wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.10: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t = t+48) JMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed JMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t = t+48) KMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed KMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t = t+48) PRTOS wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.11: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t=t+48) ECMWF peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed ECMWF peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed UKMO peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) UKMO peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed FNMOC peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) FNMOC peak period with averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.12: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t=t+48) AES peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed AES peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) NCEP peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed NCEP peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) METFR peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed METFR peak period with averaged buoy data. forecasts from 0 and 12Z.

Figure 3.13: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Figure 3.14: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Figure 3.15: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
3.2 Comparison for Hawaiian buoys

![Buoy locations diagram]

Figure 3.16: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.17: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Hawaiian buoys.
Figure 3.18: Forecast root mean square error (RMSE) and linear correlation coefficient at common Hawaiian buoys.
3.3 Comparison for North East Pacific buoys

Number of common observations for North East Pacific buoys (NEPAC) from 201707 to 201709 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Number of common observations</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>46001</td>
<td>103 103 103</td>
<td>Gulf of Alaska</td>
</tr>
<tr>
<td>46002</td>
<td>77 66 66</td>
<td>US West Coast, Oregon</td>
</tr>
<tr>
<td>46004</td>
<td>72 72 72</td>
<td>Canada West Coast, Middle Nomad</td>
</tr>
<tr>
<td>46005</td>
<td>78 62 61</td>
<td>US North-West Coast, W Astoria</td>
</tr>
<tr>
<td>46006</td>
<td>77 62 64</td>
<td>US West Coast, Southeast Papa</td>
</tr>
<tr>
<td>46029</td>
<td>104 104 104</td>
<td>US West Coast, Columbia River Bar</td>
</tr>
<tr>
<td>46035</td>
<td>103 103 103</td>
<td>Canada West Coast, North Nomad</td>
</tr>
<tr>
<td>46036</td>
<td>104 104 104</td>
<td>Canada West Coast, South Nomad</td>
</tr>
<tr>
<td>46041</td>
<td>102 102 102</td>
<td>US North-West Coast, Cape Elisabeth</td>
</tr>
<tr>
<td>46066</td>
<td>104 104 104</td>
<td>Gulf of Alaska, S Anchoins</td>
</tr>
<tr>
<td>46075</td>
<td>104 104 104</td>
<td>North Pacific, Shumagin Islands</td>
</tr>
<tr>
<td>46076</td>
<td>104 104 104</td>
<td>Gulf of Alaska, Albatross Banks</td>
</tr>
</tbody>
</table>

Figure 3.19: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.20: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Pacific buoys.
Figure 3.21: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Pacific buoys.
3.4 Comparison for North West Atlantic buoys

Figure 3.22: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.23: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North West Atlantic buoys.
Figure 3.24: Forecast root mean square error (RMSE) and linear correlation coefficient at common North West Atlantic buoys.
3.5 Comparison for Gulf of Mexico buoys

Number of common observations for Gulf of Mexico buoys (GM) from 201707 to 201709 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>201707</th>
<th>201708</th>
<th>201709</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>42001</td>
<td>77</td>
<td>65</td>
<td>56</td>
<td>Mid Gulf of Mexico</td>
</tr>
<tr>
<td>42002</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>Western Gulf of Mexico</td>
</tr>
<tr>
<td>42019</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>Gulf of Mexico Lanelle</td>
</tr>
<tr>
<td>42020</td>
<td>161</td>
<td>163</td>
<td>161</td>
<td>Gulf of Mexico Corpus Christi</td>
</tr>
<tr>
<td>42036</td>
<td>162</td>
<td>138</td>
<td>141</td>
<td>Gulf of Mexico W Tampa</td>
</tr>
<tr>
<td>42039</td>
<td>160</td>
<td>147</td>
<td>147</td>
<td>Gulf of Mexico Pensacola S</td>
</tr>
<tr>
<td>42040</td>
<td>131</td>
<td>103</td>
<td>88</td>
<td>Gulf of Mexico Mobile S</td>
</tr>
<tr>
<td>42055</td>
<td>162</td>
<td>164</td>
<td>162</td>
<td>Bay of Campeche</td>
</tr>
</tbody>
</table>

Figure 3.25: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.26: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Gulf of Mexico buoys.
Figure 3.27: Forecast root mean square error (RMSE) and linear correlation coefficient at common Gulf of Mexico buoys.
3.6 Comparison for Caribbean Sea buoys

Number of common observations for Caribbean Sea buoys (CRB) from 201707 to 201709 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Wind</th>
<th>Hs</th>
<th>Tp</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>41040</td>
<td>77</td>
<td>50</td>
<td>48</td>
<td>Tropical Atlantic, West Atlantic</td>
</tr>
<tr>
<td>41041</td>
<td>74</td>
<td>60</td>
<td>48</td>
<td>Tropical Atlantic, Middle Atlantic</td>
</tr>
<tr>
<td>41043</td>
<td>77</td>
<td>50</td>
<td>48</td>
<td>South Western Atlantic</td>
</tr>
<tr>
<td>41044</td>
<td>75</td>
<td>60</td>
<td>48</td>
<td>South Western Atlantic</td>
</tr>
<tr>
<td>41046</td>
<td>77</td>
<td>64</td>
<td>61</td>
<td>E Bahamas</td>
</tr>
<tr>
<td>41047</td>
<td>76</td>
<td>66</td>
<td>66</td>
<td>NE Bahamas</td>
</tr>
<tr>
<td>41049</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>South Western Atlantic</td>
</tr>
<tr>
<td>42056</td>
<td>77</td>
<td>74</td>
<td>74</td>
<td>Yucatan Basin</td>
</tr>
<tr>
<td>42057</td>
<td>77</td>
<td>62</td>
<td>58</td>
<td>Western Caribbean</td>
</tr>
<tr>
<td>42058</td>
<td>77</td>
<td>66</td>
<td>66</td>
<td>Central Caribbean</td>
</tr>
<tr>
<td>42059</td>
<td>75</td>
<td>56</td>
<td>56</td>
<td>Eastern Caribbean</td>
</tr>
</tbody>
</table>

![Buoy locations](image)

Figure 3.28: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.29: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Caribbean Sea buoys.
Figure 3.30: Forecast root mean square error (RMSE) and linear correlation coefficient at common Caribbean Sea buoys.
3.7 Comparison for North East Atlantic buoys

Figure 3.31: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.32: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Atlantic buoys.
Figure 3.33: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Atlantic buoys.
3.8 Comparison for Euro-Atlantic Coast buoys

![Buoy locations map]

Figure 3.34: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.35: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Euro-Atlantic Coast buoys.
Figure 3.36: Forecast root mean square error (RMSE) and linear correlation coefficient at common Euro-Atlantic Coast buoys.
3.9 Comparison for North Sea platforms

Figure 3.37: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.38: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea platforms.
Figure 3.39: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea platforms.
3.10 Comparison for North Sea buoys

Figure 3.40: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.41: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea buoys.
Figure 3.42: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea buoys.
3.11 Comparison for Icelandic buoys and Norwegian platforms

<table>
<thead>
<tr>
<th>Buoy</th>
<th>NR</th>
<th>NRDIC</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF4C</td>
<td>171</td>
<td>129</td>
<td>North Sea (Sleipner, StatoilHydro)</td>
</tr>
<tr>
<td>LF5U</td>
<td>170</td>
<td>163</td>
<td>North Sea (Ekofisk, ConocoPhillips)</td>
</tr>
<tr>
<td>TFGSK</td>
<td>0</td>
<td>150</td>
<td>West Iceland (Gardskagi)</td>
</tr>
<tr>
<td>TFKGR</td>
<td>0</td>
<td>135</td>
<td>East Iceland (Kogur)</td>
</tr>
<tr>
<td>TFSRT</td>
<td>0</td>
<td>167</td>
<td>South Iceland (Surtsey)</td>
</tr>
</tbody>
</table>

Figure 3.43: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.44: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Icelandic buoys and Norwegian platforms.
Figure 3.45: Forecast root mean square error (RMSE) and linear correlation coefficient at common Icelandic buoys and Norwegian platforms.
Figure 3.46: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.47: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Baltic Sea buoys.
Figure 3.48: Forecast root mean square error (RMSE) and linear correlation coefficient at common Baltic Sea buoys.
3.13 Comparison for English Channel and Irish Sea

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>CH</th>
<th>AM</th>
<th>BS</th>
<th>Location</th>
<th>CEFAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>63029</td>
<td>173</td>
<td>6</td>
<td>E</td>
<td>South Ireland, Marathon rig</td>
<td></td>
</tr>
<tr>
<td>62044</td>
<td>0</td>
<td>174</td>
<td>173</td>
<td>English Channel, South Knock</td>
<td>CEFAS</td>
</tr>
<tr>
<td>62287</td>
<td>0</td>
<td>173</td>
<td>175</td>
<td>Irish Sea, Liverpool Bay,</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.49: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.50: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common English Channel and Irish Sea.
Figure 3.51: Forecast root mean square error (RMSE) and linear correlation coefficient at common English Channel and Irish Sea.
3.14 Comparison for Western Mediterranean Sea buoys

![Buoy locations and table]

Figure 3.52: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.53: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Western Mediterranean Sea buoys.
Figure 3.54: Forecast root mean square error (RMSE) and linear correlation coefficient at common Western Mediterranean Sea buoys.
3.15 Comparison for Mediterranean Sea buoys

Figure 3.55: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.56: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Mediterranean Sea buoys.
Figure 3.57: Forecast root mean square error (RMSE) and linear correlation coefficient at common Mediterranean Sea buoys.
3.16 Comparison for Indian buoys

Number of common observations for Indian buoys (INDIA) from 201707 to 201709 (wind, Hs, Tp)

Figure 3.58: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.59: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Indian buoys.
Figure 3.60: Forecast root mean square error (RMSE) and linear correlation coefficient at common Indian buoys.
3.17 Comparison for Korean buoys

Figure 3.61: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.62: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Korean buoys.
Figure 3.63: Forecast root mean square error (RMSE) and linear correlation coefficient at common Korean buoys.
3.18 Comparison for Japanese buoys

Figure 3.64: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.65: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Japanese buoys.
Figure 3.66: Forecast root mean square error (RMSE) and linear correlation coefficient at common Japanese buoys.
Figure 3.67: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.68: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South East Coast buoys.
Figure 3.69: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South East Coast buoys.
3.20 Comparison for Australian Great Barrier Reef buoys

Figure 3.70: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.71: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian Great Barrier Reef buoys.
Figure 3.72: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian Great Barrier Reef buoys.
3.21 Comparison for Australian South West facing Coast buoys

Figure 3.73: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
<table>
<thead>
<tr>
<th>Model</th>
<th>Scatter Index (%)</th>
<th>BIAS (m)</th>
<th>BIAS (m/s)</th>
<th>BIAS (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>FNM</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MTF</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>DWD</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>BoM</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>NZM</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>SHN</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Figure 3.74: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South West facing Coast buoys.
Figure 3.75: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South West facing Coast buoys.
3.22 Comparison for Australian North West Coast buoys

Figure 3.76: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.77: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian North West Coast buoys.
Figure 3.78: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian North West Coast buoys.
3.23 Comparison for New Zealand buoy

Figure 3.79: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.80: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common New Zealand buoy.
Figure 3.81: Forecast root mean square error (RMSE) and linear correlation coefficient at common New Zealand buoy.
Figure 3.82: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.83: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Brazilian buoys.
Figure 3.84: Forecast root mean square error (RMSE) and linear correlation coefficient at common Brazilian buoys.