Tsunami Hazard at the Spanish Coasts

UTE PROES PRINCIPIA

M.J. Crespo (1), A. Palao (2), L. Lacoma (1), A. Tintoré (2), F. Martínez(1),

1. PRINCIPIA
2. PROES

Workshop on NEAMTW

25-26 September 2017
Content

- Introduction
- Object
- Scope
- Methodology
- Characterisation of seismic sources
- Bathymetry and topography
- Numerical simulations
- Results
- Conclusions
- Recommendations
Introduction

- RD 1053/2015 approved Basic Directive of Protección Civil planning against Tsunami risk
 - Section 3.1. (Tsunami Hazard Assessment)
 - It is necessary to develop Tsunami hazard maps "in order to determine the territorial areas where it is essential, advisable or unnecessary for the Autonomous Regions to draft civil protection plans to face this risk"

- Protección Civil commissioned UTE PROES-PRINCIPIA to produce the required maps
Introduction

- Current status:
 - Answers given to comments from Working Group following up the tasks of the Basic Directive
 - The results are available at: http://www.proteccioncivil.es/riesgos/maremotos/documentacion
 - A summary was published in the electronic Journal of Protección Civil
 http://www.proteccioncivil.es/revistadigital/revistaNoticia.php?page=1&n=76
 - National Council of Civil Protection
 - Permanent Commission has already been informed
 - Still pending to be presented to the Plenary Session
Object

- To determine the Tsunami hazard at the Spanish coasts following a deterministic approach. Two final outcomes:
 - Map of maximum sea level elevations and arrival times
 - Final report and presentation of results, conclusions and recommendations
Scope

Tasks:

- Identification of tsunami sources
- Gathering of the required bathymetry and topography data and integration in a common data base
- Numerical simulations associating each identified source with the corresponding consequences at the coast
- Analysis of the results, derivation of conclusions and recommendations
- Documentation of the work performed
Methodology

- Characterisation of seismic sources
 - Identification of faults with at least half of their trace offshore
 - Parameters required Okada (1985).
 - Length
 - Dip
 - Width
 - Rake
 - Displacement D \(\Rightarrow\) To be calculated
 - Evaluation of the maximum Magnitude
 - Correlations from technical literature
 - Contrast with magnitudes from the seismic catalogue
 - M_w \(\Rightarrow\) Seismic Moment \(\Rightarrow\) D

From IGME (2016)
Methodology

- Numerical simulations
 - Compilation of topographic and bathymetric data
 - Homogenisation of compiled information
 - Hydrodynamic propagation: Delft3D-FLOW
 - Pre-processing: initial (Okada, 1985) and boundary conditions with Delft-Dashboard
 - Post-processing: generation of maps from the results with arcGIS
Source characterisation

- Faults databases:
 - QAFI - Quaternary Active Faults Database of Iberia
 - Faults with more at least half of their trace offshore recalculated with updated correlations (Stirling & Goded, 2012)
 - European Database of Seismogenic Faults (SHARE task 3.2)
 - Maximum assigned Magnitude: criteria indicated (correlation or observed seismicity) recalculated (Stirling & Goded, 2012)

- Technical literature

- Total: 66 faults
Tsunami Hazard at the Spanish Coasts

Zone 1

Zone 2

25 September 2017

Tsunami Hazard at the Spanish Coasts
Tsunami Hazard at the Spanish Coasts

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8
Bathymetry and topography

- Information adopted for the Digital Terrain Model (DTM):
 - Dirección General de Sostenibilidad de la Costa y del Mar
 - Puertos de Estado
 - Instituto Español de Oceanografía
 - Instituto Geográfico Nacional
 - Instituto Hidrográfico de la Marina
 - GEBCO data

Different scales
Bathymetry and topography

- **DTM preparation:**
 - GIS homogenisation of topography and bathimetry to a common coordinate system and reference level
 - Bathymetry: EMODnet and GEBCO
 - Topography: IGN information

 WGS84 (geographic coordinates).
 Elevations referred to Mean Sea Level (MSL).
Numerical simulations

- Definition of zones where tsunamigenic faults are located: 8 Zones
- Calculation grids:
 - Caribbean, Canary Islands, Algeria, Italy, and Iceland: 3km x 3km + nested of 500m x 500m
 - Gulf of Cadiz and Levante: 500m x 500m
Numerical simulations

- General results with 500 m x 500 m grids
- Determination of critical zones and the associated tsunami generating faults
- Detailed study with 50 m x 50 m meshes or 25 m x 25 m meshes in critical zones, only for the governing tsunamis
- Total cases: 66

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td># cases</td>
<td>8</td>
<td>43</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Numerical simulations

- **Boundary conditions:**
 - Riemann (initial mesh) → non-reflecting boundaries
 - Time series of elevations extracted from previous simulations (nested meshes)

- **Initial conditions:**
 Initial elevation of the sea surface as a consequence of the vertical displacement of the fault at the sea bottom
Numerical simulations

- Sensitivity analyses:
 - Mesh size
 - Maximum differences around 0.5 m
 - Tide
 - The results of applying simultaneously tide and tsunami are approximately equal to the sum of their individual effects
 - Source parameters from Gulf of Cadiz zone
 - Earthquake magnitude
 - Fault trace

- Model validation
 - Results consistent with observations at the Gulf of Cadiz during the 1755 Lisbon earthquake
Results

- For each fault at least one simulation has been performed
- Each simulation produces the following results:
 - Sea surface elevation contours at different times
 - Sea surface elevation history at coastal control points
- The final results for the Spanish coasts are:
 - Maximum sea surface elevations maps along the coast
 - Maps of source faults that generate maximum sea surface elevations
 - Maps showing the areas where the maximum sea elevation exceeds 0.5m, including arrival time and the causal fault
Results: Maximum sea surface elevation
Results: faults that generate the maximum sea surface elevations
Results: Maximum sea surface elevations > 0.5 m
Conclusions

- The tsunami hazard at the Spanish coasts has been deterministically studied in terms of maximum sea elevation. A state-of-the-art methodology has been adopted for source characterisation and hydrodynamic modelling.

- Arrival times have also been calculated for the critical scenarios.
Conclusions

- The hazard is highest at the SW coasts: Huelva, Cadiz, Canary Islands
 - Sea surface elevations higher than 8 m
 - Arrival times for maximum sea elevations: 1 hour Huelva
 – 1.5 hour Canary Islands
 - Minimum arrival time: 30 min (Huelva)
- Relevant maximum elevations (> 0.5 m) along the Mediterranean coast and Galicia
- Elevations are very moderate in the Gulf of Biscay
Recommendations

- More detailed studies should be conducted for the areas where the maximum sea levels exceed 50 cm.
- Those studies should use a probabilistic approach.
- Detailed studies are also warranted for governing faults to quantify their uncertainties in parameters and use them in a probabilistic approach.
- Hazard is only the first step:
 \[
 \text{Risk} = \text{Hazard} \times \text{Vulnerability}
 \]
 incorporating the consequences later on