THE ESTABLISHMENT OF CIF IN INDONESIA

Andi E. Sakya
Director General

Presented at the Phase 1 of CIFDP – Indonesia, Yogyarakta 7 October 2014
1. Introduction;
2. Lesson Learnt;
3. Modality;
4. CIFDP Progress;
5. Closing Remarks
INTRODUCTION

1. Crowded;
2. Flat;
3. Hot;
4. Vulnerable.

INTRODUCTION

HOTTER IMPACT

1. Increase of GHG Concentration;
2. Increase of Surface Temperature;
3. Reduction of Ice Sheets;
4. Sea Level Rise;
5. Increase of precipitation in Tropical Area;
6. Salinity in Tropical Area decreases;
7. Global Circulation decrease due to Thermocline gradient;
8. Global Wind Circulation decreases due to temperature gradient between tropical and high latitude areas;
9. Increase of Evaporation Rate;
10. Reduce of Rain Days
11. No-rain days extend;
12. Water Content Reduce ↔ Drought;
13. Sea and atmospheric acidity increase;
14. Increase of occurrence of extreme weather and climate
1. Mechanisms of disaster are not fully understood;
2. Natural carrying capacity is getting more and more vulnerable;
3. People are powerless;
4. Early Warning System is not functioning well or not exist;
INTRODUCTION

CROWDED AND VULNERABLE

estimated 2015 population density
persons per km²

[0-5]
[5-25]
[25-200]
[200-500]
[500-1,000]
[1,000-1,500]
[>1,500]

http://www.nasa.gov/centers/goddard/images/content/95539main_fig1.jpg
INTRODUCTION

VULNERABLE REGION

Mentawai’s Tsunami

1. Displaced > ~ 20,000 people, affected about 4,000 households, and 435 people reported dead, with over 100 more missing;
2. Early Warning System worked well as it disseminated the warning within 4 minute 46 second;
3. The epicenter is so close to the islands that a warning would probably have been too late in any case, as the tsunami only took about five to ten minutes to reach Pagai;
4. Post comprehensive evaluation ➔ the system works well, the downstream part is as not fast as the upstream development.
### LEVEL OF THREAT	TSUNAMI WAVE HEIGHT	RECOMMENDATION
Major | h > 3 m | Evacuate Immediately
Warning | 0.5 ≤ h < 3 m | Evacuate Immediately
Advisory | h < 0.5 m | Stay away and leave coastal area

Evaluation of the DSS Based:
- **Validation of numerical** model and simulation results;
- **Input** bathimetry, historical paleo-tsunami;
- **Dissemination** coverage;
- **Evacuation** map and route;
- **Practice, Train and Exercise**.
Early Warning System Establishment:

1. Continuous Learning, Effort, Assessment and Report (CLEAR);

2. Involving multi: Elements, Stakeholders, Sectors, Aspects, and Years (ESSAY);

Long Term Planning ↔ Road Map
CIFDP PROGRESS

PROGRAM PLANNING

Contents

Introduction

Lesson Learnt

Modality

CIFDP Progress

Closing Remarks

Phase 0
Project Preparation

2013
National Stakeholder Workshop, 3 – 5 Dec’13

Phase 1
Project Adaptation

2014
DNA Signed

October 2014
Phase 1 Review

Phase 2 Kick Off

Phase 3
System Implementation

2015
2015 / 2016
Simulated Multi Agencies Exercise – Technical Capacity Building

Phase 4
Pre-Operational Testing

Phase 5
Live Running & Evaluation

2016
Dec 2016
Evaluation Workshop with Media Partners and Users
CURRENT STATUS

- **DNA** (Definitive National Agreement) and **NCT** (National Coordination Team) to be signed on November 2014.

- Draft of **URP** (User Requirement Plan) and **NCA** (National Capacity Assessment) have been submitted to PSG.
1. Appreciation and expectation for a sustain support from our partners in particular the National Coordination Team (NCT) of the CIFDP – I;

2. Request for WMO technical assistance and support:
 - Executing the next phase of CIFDP-I, especially in developing the system design for our CIFDP – I;
 - Blueprint and Roadmap of the establishment of Coastal Inundation Forecast Indonesia (CIF – I).
THANK YOU

andi.eka.sakya@gmail.com
andi.eka.sakya@bmkg.go.id