Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM
January 2014 to March 2014

Jean-Raymond Bidlot, European Centre for Medium-range Weather Forecasts, jean.bidlot@ecmwf.int

April 30, 2014
Chapter 1

Forewords

Outputs from different fully operational forecasting centres are compared to buoy and platform data as broadcasted to the meteorological community via the Global Telecommunication System (GTS). On a monthly basis, data are gathered informally from weather services with an interest in wave forecasting (Bidlot and Holt, 2006). The different data sets are subsequently merged and made available to all participating partners for further evaluation. In this document, examples, in graphical and tabular forms, are shown. These results have been processed at ECMWF and should served as an example to the kind of information that could be obtained from such comparison. No statement of quality, nor reasons why the different systems are performing differently will be given.
Chapter 2

Data

Before using observations for verification, care has to be taken to process the data to remove any erroneous observations. Moreover, extra care has to be taken to match the scale of both model and observations. This scale matching is achieved by averaging the hourly data in ±2 hour time windows centered on the four major synoptic times corresponding to the normal model output times. The original quality control and averaging procedure was discussed in Bidlot et al. (2002). It was extended to include platform data as described in Sætra and Bidlot (2004). Note that in this paper we refer to these data as buoy data since most of them are from moored buoys, except if stated otherwise.

The intercomparison relies on the exchange of model output at buoy locations. An agreed upon list of locations is used where observations are known to be available. Because buoy networks are changing with time, as witnessed by a rapid increase in the number of buoys available via the GTS since the mid-nineties, updates to the list have been necessary. Not all participating centres have been able to update their list however. Other participants are only running limited area model(s) or do produce the parameter(s) that can be compared to the buoy data. Because of the limited number of buoys, a fair comparison between the different systems can only be achieved if the same number of buoys and the same number of buoy-model collocations are used.

In this document, data that are common to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used whenever available. Some sub-areas might only have some of the participants and when all locations are considered, the limited models are left out. The other participants are left blank in the plots below.
References

Contents

1. Forewords ... 1
2. Data .. 2
3. Results ... 5
 3.1 Comparison for all buoys 6
 3.2 Comparison for Hawaiian buoys 21
 3.3 Comparison for North East Pacific buoys 24
 3.4 Comparison for North West Atlantic buoys 27
 3.5 Comparison for Gulf of Mexico buoys 30
 3.6 Comparison for Caribbean Sea buoys 33
 3.7 Comparison for North East Atlantic buoys 36
 3.8 Comparison for Euro-Atlantic Coast buoys 39
 3.9 Comparison for North Sea platforms 42
 3.10 Comparison for North Sea buoys 45
 3.11 Comparison for Icelandic buoys and Norwegian platforms 48
 3.12 Comparison for Barents Sea buoys 51
 3.13 Comparison for Baltic Sea buoys 54
 3.14 Comparison for English Channel and Irish Sea 57
 3.15 Comparison for Western Mediterranean Sea buoys 60
 3.16 Comparison for Mediterranean Sea buoys 63
 3.17 Comparison for Korean buoys 66
 3.18 Comparison for Japanese buoys 69
 3.19 Comparison for Marshall Islands buoy 72
 3.20 Comparison for Australian South East Coast buoys 75
<table>
<thead>
<tr>
<th>3.21</th>
<th>Comparison for Australian South West facing Coast buoys</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.22</td>
<td>Comparison for Australian North West Coast buoys</td>
<td>81</td>
</tr>
<tr>
<td>3.23</td>
<td>Comparison for New Zealand buoy</td>
<td>84</td>
</tr>
<tr>
<td>3.24</td>
<td>Comparison for Brazilian buoys</td>
<td>87</td>
</tr>
</tbody>
</table>
Chapter 3

Results

In the remaining pages, some of the results of the comparison with buoys are presented for all common buoys and for common buoys within a sub-area as displayed by the corresponding maps. Summary forecast scores are shown first, followed by density scatter diagrams with associated statistics for each subarea. Only common data to ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM are used.

This report was generated automatically, which explains its very generic appearance.
3.1 Comparison for all buoys

Figure 3.1: Buoy locations
Figure 3.2: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common all buoys.
Figure 3.3: Forecast root mean square error (RMSE) and linear correlation coefficient at common all buoys.
Comparison of analysed FNMOC wave height with averaged buoy data. forecasts from 0 and 12Z.

Wave height (m) buoy
0 2 4 6 8 10 12 14 16 18
0 2 4 6 8 10 12 14 16

Comparison of forecast(t=t+48) UKMO wave height with averaged buoy data. forecasts from 0 and 12Z.

Wave height (m)
0 2 4 6 8 10 12 14 16 18
0

Comparison of analysed ECMWF wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) ECMWF wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed UKMO wave height with averaged buoy data, forecasts from 0 and 12Z.

Comparison of analysed FNMOC wave height with averaged buoy data, forecasts from 0 and 12Z.

(a) t+0
(b) t+48

Figure 3.4: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.5: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) SHOM wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed SHOM wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed AUSBM wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) AUSBM wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed SHOM wave height with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) SHOM wave height with averaged buoy data. forecasts from 0 and 12Z.

Figure 3.6: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.
Figure 3.7: Scatter diagrams for wave height at step 0 and 48 for the displayed centres at all buoys.

(a) $t+0$

Comparison of forecast $t+0$ PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.

Wave height (m) buoy

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000 SI = 0.000
RMSE = 0.000 BIAS = 0.000
LSQ FIT: SLOPE = 0.000 INTR = 0.000
BUOY MEAN = 0.00 STDEV = 0.000
MODEL MEAN = 0.00 STDEV = 0.000
ENTRIES = 0

(b) $t+48$

Comparison of forecast $t+48$ PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.

Wave height (m) buoy

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000 SI = 0.000
RMSE = 0.000 BIAS = 0.000
LSQ FIT: SLOPE = 0.000 INTR = 0.000
BUOY MEAN = 0.00 STDEV = 0.000
MODEL MEAN = 0.00 STDEV = 0.000
ENTRIES = 0

Comparison of forecast $t+48$ JMA wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed KMA wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast $t+48$ KMA wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast $t+48$ JMA wave height with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wave height with averaged buoy data. Forecasts from 0 and 12Z.
Comparison of forecast(t=t+48) FNMOC wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed FNMOC wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Wind Speed (m/s) buoy

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Comparison of forecast(t=t+48) UKMO wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed UKMO wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) ECMWF wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed ECMWF wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Wind Speed (m/s) buoy

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

(a) t+0

(b) t+48

Figure 3.8: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast(t=t+48) METFR wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed METFR wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) AES wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed AES wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) NCEP wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed NCEP wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys. Figure 3.9: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed SHOM wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed AUSBM wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) DWD wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) SHOM wind speed with height corrected averaged buoy data. forecasts from 0 and 12Z.

Figure 3.10: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.

Comparison of forecast (t=t+48) PRTOS wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed PRTOS wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) KMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed KMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) JMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed JMA wind speed with height corrected averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.11: Scatter diagrams for wind speed at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t=t+48) FNMOC peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed FNMOC peak period with averaged buoy data. Forecasts from 0 and 12Z.

<table>
<thead>
<tr>
<th>Peak Period (s)</th>
<th>Buoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>

Comparison of forecast (t=t+48) ECMWF peak period with averaged buoy data. Forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.963
CORR COEF = 0.865
SI = 0.162
RMSE = 1.794
BIAS = -0.431
LSQ FIT: SLOPE = 0.872
INTR = 0.750
BUOY MEAN = 9.37
STDEV = 2.922
MODEL MEAN = 8.92
STDEV = 2.944
ENTRIES = 12082

SYMMETRIC SLOPE = 0.957
CORR COEF = 0.854
SI = 0.151
RMSE = 1.587
BIAS = -0.450
LSQ FIT: SLOPE = 0.864
INTR = 0.758
BUOY MEAN = 9.36
STDEV = 2.923
MODEL MEAN = 8.92
STDEV = 2.950
ENTRIES = 10368

Comparison of analysed ECMWF peak period with averaged buoy data. Forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.967
CORR COEF = 0.840
SI = 0.181
RMSE = 1.740
BIAS = -0.397
LSQ FIT: SLOPE = 0.876
INTR = 0.762
BUOY MEAN = 9.37
STDEV = 2.922
MODEL MEAN = 8.98
STDEV = 3.049
ENTRIES = 12082

SYMMETRIC SLOPE = 0.997
CORR COEF = 0.906
SI = 0.137
RMSE = 1.417
BIAS = -0.046
LSQ FIT: SLOPE = 0.922
INTR = 0.684
BUOY MEAN = 9.37
STDEV = 2.909
MODEL MEAN = 9.32
STDEV = 2.973
ENTRIES = 10368

Comparison of analysed UKMO peak period with averaged buoy data. Forecasts from 0 and 12Z.

Figure 3.12: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of analysed AES peak period with averaged buoy data. forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000
RMSE = 0.000
BIAS = 0.000
LSQ FIT: SLOPE = 0.000
BUOY MEAN = 0.00
STDEV = 0.000
MODEL MEAN = 0.00
STDEV = 0.000
ENTRIES = 0

Comparison of analysed NCEP peak period with averaged buoy data. forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000
RMSE = 0.000
BIAS = 0.000
LSQ FIT: SLOPE = 0.000
BUOY MEAN = 0.00
STDEV = 0.000
MODEL MEAN = 0.00
STDEV = 0.000
ENTRIES = 0

Comparison of analysed METFR peak period with averaged buoy data. forecasts from 0 and 12Z.

number of entries:

SYMMETRIC SLOPE = 1.028
CORR COEF = 0.887
RMSE = 1.421
BIAS = 0.273
LSQ FIT: SLOPE = 0.898
BUOY MEAN = 9.37
STDEV = 2.922
MODEL MEAN = 9.65
STDEV = 2.957
ENTRIES = 12082

Comparison of forecast(t=t+48) AES peak period with averaged buoy data. forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000
RMSE = 0.000
BIAS = 0.000
LSQ FIT: SLOPE = 0.000
BUOY MEAN = 0.00
STDEV = 0.000
MODEL MEAN = 0.00
STDEV = 0.000
ENTRIES = 0

Comparison of forecast(t=t+48) NCEP peak period with averaged buoy data. forecasts from 0 and 12Z.

SYMMETRIC SLOPE = 0.000
CORR COEF = 0.000
RMSE = 0.000
BIAS = 0.000
LSQ FIT: SLOPE = 0.000
BUOY MEAN = 0.00
STDEV = 0.000
MODEL MEAN = 0.00
STDEV = 0.000
ENTRIES = 0

Comparison of forecast(t=t+48) METFR peak period with averaged buoy data. forecasts from 0 and 12Z.

number of entries:

SYMMETRIC SLOPE = 1.013
CORR COEF = 0.867
RMSE = 1.531
BIAS = 0.108
LSQ FIT: SLOPE = 0.895
BUOY MEAN = 9.37
STDEV = 2.909
MODEL MEAN = 9.48
STDEV = 3.002
ENTRIES = 10368

(a) t+0

(b) t+48

Figure 3.13: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Comparison of forecast (t=t+48) SHOM peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed SHOM peak period with averaged buoy data. Forecasts from 0 and 12Z.

<table>
<thead>
<tr>
<th>Peak Period (s)</th>
<th>Buoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of forecast (t=t+48) DWD peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed DWD peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) AUSBM peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed AUSBM peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of forecast (t=t+48) SHOM peak period with averaged buoy data. Forecasts from 0 and 12Z.

Comparison of analysed SHOM peak period with averaged buoy data. Forecasts from 0 and 12Z.

(a) t+0

(b) t+48

Figure 3.14: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.
Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.

Figure 3.15: Scatter diagrams for peak period at step 0 and 48 for the displayed centres at all buoys.

(a) t+0

(b) t+48

Comparison of forecast(t=t+48) PRTOS peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) KMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of forecast(t=t+48) JMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed JMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed KMA peak period with averaged buoy data. forecasts from 0 and 12Z.

Comparison of analysed PRTOS peak period with averaged buoy data. forecasts from 0 and 12Z.
3.2 Comparison for Hawaiian buoys

Figure 3.16: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.17: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Hawaiian buoys.
Figure 3.18: Forecast root mean square error (RMSE) and linear correlation coefficient at common Hawaiian buoys.
3.3 Comparison for North East Pacific buoys

Number of common observations for North East Pacific buoys (NEPAC) from 201401 to 201403 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Number</th>
<th>ID</th>
<th>Wind</th>
<th>Hs</th>
<th>Tp</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46001</td>
<td>0</td>
<td>178</td>
<td>178</td>
<td>Gulf of Alaska</td>
</tr>
<tr>
<td>2</td>
<td>46002</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>US West Coast, Oregon</td>
</tr>
<tr>
<td>3</td>
<td>46004</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, Middle Nomad</td>
</tr>
<tr>
<td>4</td>
<td>46009</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>US West Coast, Columbia River Bar</td>
</tr>
<tr>
<td>5</td>
<td>46036</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, South Nomad</td>
</tr>
<tr>
<td>6</td>
<td>46141</td>
<td>0</td>
<td>177</td>
<td>177</td>
<td>US North-West Coast, Cape Elisabeth</td>
</tr>
<tr>
<td>7</td>
<td>46066</td>
<td>177</td>
<td>178</td>
<td>178</td>
<td>Gulf of Alaska, S Alutus</td>
</tr>
<tr>
<td>8</td>
<td>46075</td>
<td>176</td>
<td>176</td>
<td>176</td>
<td>Gulf of Alaska, Cape Cleare</td>
</tr>
<tr>
<td>9</td>
<td>46078</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Gulf of Alaska, Albatross Banks</td>
</tr>
<tr>
<td>10</td>
<td>46084</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Gulf of Alaska, Cape Edgecumbe</td>
</tr>
<tr>
<td>11</td>
<td>46132</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, South Brooks</td>
</tr>
<tr>
<td>12</td>
<td>46147</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, South Morestic</td>
</tr>
<tr>
<td>13</td>
<td>46029</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, North Nomad</td>
</tr>
<tr>
<td>14</td>
<td>46026</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, W. Dixon Entrance</td>
</tr>
<tr>
<td>15</td>
<td>46037</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>Canada West Coast, East Delwood</td>
</tr>
<tr>
<td>16</td>
<td>46013</td>
<td>0</td>
<td>177</td>
<td>177</td>
<td>US South-West Coast, Cape Mendocino (scripps 094)</td>
</tr>
<tr>
<td>17</td>
<td>46213</td>
<td>0</td>
<td>177</td>
<td>177</td>
<td>US South-West Coast, Cape Mendocino (scripps 126)</td>
</tr>
<tr>
<td>18</td>
<td>46229</td>
<td>0</td>
<td>177</td>
<td>177</td>
<td>US West Coast, Coos Bay (scripps 166)</td>
</tr>
<tr>
<td>19</td>
<td>46246</td>
<td>0</td>
<td>173</td>
<td>173</td>
<td>US West Coast, Ocean Station PAPA (scripps 166)</td>
</tr>
</tbody>
</table>

Figure 3.19: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.20: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Pacific buoys.
Figure 3.21: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Pacific buoys.
3.4 Comparison for North West Atlantic buoys

Figure 3.22: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.23: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North West Atlantic buoys.
Figure 3.24: Forecast root mean square error (RMSE) and linear correlation coefficient at common North West Atlantic buoys.
3.5 Comparison for Gulf of Mexico buoys

Figure 3.25: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.26: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Gulf of Mexico buoys.
Figure 3.27: Forecast root mean square error (RMSE) and linear correlation coefficient at common Gulf of Mexico buoys.
3.6 Comparison for Caribbean Sea buoys

Number of common observations for Caribbean Sea buoys (CRB) from 201401 to 201403 (wind, Hs, Tp)

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 41040</td>
<td>17° 17° 17°</td>
<td>Tropical Atlantic, West Atlantic</td>
<td></td>
</tr>
<tr>
<td>2 41041</td>
<td>17° 17° 17°</td>
<td>Tropical Atlantic, Middle Atlantic</td>
<td></td>
</tr>
<tr>
<td>3 41043</td>
<td>17° 17° 17°</td>
<td>South Western Atlantic</td>
<td></td>
</tr>
<tr>
<td>4 41044</td>
<td>17° 17° 17°</td>
<td>South Western Atlantic</td>
<td></td>
</tr>
<tr>
<td>5 41046</td>
<td>17° 17° 17°</td>
<td>E Bahamas</td>
<td></td>
</tr>
<tr>
<td>6 41047</td>
<td>17° 17° 17°</td>
<td>NE Bahamas</td>
<td></td>
</tr>
<tr>
<td>7 41048</td>
<td>17° 17° 17°</td>
<td>South Western Atlantic</td>
<td></td>
</tr>
<tr>
<td>8 42056</td>
<td>17° 17° 17°</td>
<td>Yucatan Basin</td>
<td></td>
</tr>
<tr>
<td>9 42057</td>
<td>17° 17° 17°</td>
<td>Western Caribbean</td>
<td></td>
</tr>
<tr>
<td>10 42058</td>
<td>17° 17° 17°</td>
<td>Central Caribbean</td>
<td></td>
</tr>
<tr>
<td>11 42059</td>
<td>17° 17° 17°</td>
<td>Eastern Caribbean</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.28: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.29: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Caribbean Sea buoys.
Figure 3.30: Forecast root mean square error (RMSE) and linear correlation coefficient at common Caribbean Sea buoys.
3.7 Comparison for North East Atlantic buoys

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Common Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>62021</td>
<td>14 14 0 UK East Atlantic (K2)</td>
</tr>
<tr>
<td>62095</td>
<td>56 56 0 West Ireland (M6), West Coast</td>
</tr>
<tr>
<td>62105</td>
<td>169 175 0 UK East Atlantic (K4)</td>
</tr>
<tr>
<td>62143</td>
<td>173 173 0 UK Celtic Sea shelf break (Brittany)</td>
</tr>
<tr>
<td>64045</td>
<td>174 174 0 UK North-East Atlantic (K5)</td>
</tr>
</tbody>
</table>

Figure 3.31: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.32: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North East Atlantic buoys.
Figure 3.33: Forecast root mean square error (RMSE) and linear correlation coefficient at common North East Atlantic buoys.
3.8 Comparison for Euro-Atlantic Coast buoys

Figure 3.34: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.35: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Euro-Atlantic Coast buoys.
Figure 3.36: Forecast root mean square error (RMSE) and linear correlation coefficient at common Euro-Atlantic Coast buoys.
3.9 Comparison for North Sea platforms

Figure 3.37: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.38: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea platforms.
Figure 3.39: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea platforms.
3.10 Comparison for North Sea buoys

Figure 3.40: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.41: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common North Sea buoys.
Figure 3.42: Forecast root mean square error (RMSE) and linear correlation coefficient at common North Sea buoys.
3.11 Comparison for Icelandic buoys and Norwegian platforms

Figure 3.43: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.44: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Icelandic buoys and Norwegian platforms.
Figure 3.45: Forecast root mean square error (RMSE) and linear correlation coefficient at common Icelandic buoys and Norwegian platforms.
3.12 Comparison for Barents Sea buoys

<table>
<thead>
<tr>
<th>Buoy ID</th>
<th>Number of Observations</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFB1</td>
<td>129</td>
<td>Barents Sea (Oceanor buoy WS070, SW Bear Island)</td>
</tr>
<tr>
<td>LFB3</td>
<td>175</td>
<td>Barents Sea (Oceanor buoy WS017, Nordkyn)</td>
</tr>
</tbody>
</table>

Figure 3.46: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.47: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Barents Sea buoys.
Figure 3.48: Forecast root mean square error (RMSE) and linear correlation coefficient at common Barents Sea buoys.
3.13 Comparison for Baltic Sea buoys

Figure 3.49: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.50: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Baltic Sea buoys.
Figure 3.51: Forecast root mean square error (RMSE) and linear correlation coefficient at common Baltic Sea buoys.
3.14 Comparison for English Channel and Irish Sea

Figure 3.52: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.53: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common English Channel and Irish Sea.
Figure 3.54: Forecast root mean square error (RMSE) and linear correlation coefficient at common English Channel and Irish Sea.
3.15 Comparison for Western Mediterranean Sea buoys

Figure 3.55: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.56: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Western Mediterranean Sea buoys.
Figure 3.57: Forecast root mean square error (RMSE) and linear correlation coefficient at common Western Mediterranean Sea buoys.
3.16 Comparison for Mediterranean Sea buoys

Figure 3.58: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.59: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Mediterranean Sea buoys.
Figure 3.60: Forecast root mean square error (RMSE) and linear correlation coefficient at common Mediterranean Sea buoys.
3.17 Comparison for Korean buoys

Figure 3.61: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.62: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Korean buoys.
Figure 3.63: Forecast root mean square error (RMSE) and linear correlation coefficient at common Korean buoys.
3.18 Comparison for Japanese buoys

Figure 3.64: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.65: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Japanese buoys.
Figure 3.66: Forecast root mean square error (RMSE) and linear correlation coefficient at common Japanese buoys.
Figure 3.67: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.68: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Marshall Islands buoy.
Figure 3.69: Forecast root mean square error (RMSE) and linear correlation coefficient at common Marshall Islands buoy.
3.20 Comparison for Australian South East Coast buoys

Figure 3.70: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.71: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South East Coast buoys.
Figure 3.72: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South East Coast buoys.
3.21 Comparison for Australian South West facing Coast buoys

Figure 3.73: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.74: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian South West facing Coast buoys.
Figure 3.75: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian South West facing Coast buoys.
Figure 3.76: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.77: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Australian North West Coast buoys.
Figure 3.78: Forecast root mean square error (RMSE) and linear correlation coefficient at common Australian North West Coast buoys.
3.23 Comparison for New Zealand buoy

Figure 3.79: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.80: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common New Zealand buoy.
Figure 3.81: Forecast root mean square error (RMSE) and linear correlation coefficient at common New Zealand buoy.
Figure 3.82: Buoy locations. The numbers in the table following each buoy identifier are the number of collocations between models and buoy wind speed, wave height and peak period.
Figure 3.83: Forecast scatter index (standard deviation of the difference normalised by the mean of the observations) and bias (model-buoy) at common Brazilian buoys.
Figure 3.84: Forecast root mean square error (RMSE) and linear correlation coefficient at common Brazilian buoys.